PFO Closure—
Will They Ever Get Any RESPECT?

John M Lasala, MD, PhD, FACC
Professor of Medicine
Director of Structural Heart Disease
Cardiovascular Division
Washington University School of Medicine
St. Louis, Missouri
Disclosure:

- Consulting/Employment: St. Jude Medical, Boston Scientific, Abiomed, and Covidien
- Stock Equity or Options: Direct Flow
- Speakers’ Bureaus/Honoraria: St. Jude Medical, Boston Scientific, and Abiomed
The PFO / Stroke Story

1513

Leonardo da Vinci

♥ Heart Drawings

“I have found a perforating channel from the left auricle to right auricle.”

Windsor Folios, part of the Royal Collection, held at Windsor
The PFO / Stroke Story

1877

Julius Friedrich Cohnheim

- German Pathologist
- Protégé of Virchow
- Patent Foramen Ovale

Julius Cohnheim (1839–84). (Collect-
The PFO / Stroke Story

Julius Friedrich Cohnheim

♥ “I recently had a case of a deadly embolus in the frontal lobe of a 35-year old woman with apoplexy. In the lower extremity a long thrombus was found and ... what I found next I never thought of, to put these two together, until I had a close look at the heart.”

♥ “I found a very large foramen ovale through which I could pass three fingers with ease. Now I could no longer ignore the fact that a torn-off piece of thrombus arising from the lower extremity, while traveling through the heart, passed out of the RA into the LA and to the frontal lobe.”
The Interatrial Septum

- Superior Vena Cava
- Fossa Ovalis
- Inferior Vena Cava
- Coronary Sinus
- Tricuspid Valve
IV Saline Contrast Study
There are no FDA-approved devices for PFO but off-label use abounds

- Amplatzer Septal Occluder
 - AGA Medical Corporation
- Gore Helex Septal Occluder
 - W.L. Gore & Associates
Conditions Associated with PFO (Patent Foramen Ovale)

1. Cryptogenic Stroke < 60yo, or older
2. Migraine Headache with or w/o aura
3. Orthodeoxia Platypnea (O₂ Sat < 92%)
4. Acute MI with normal coronaries
5. Decompression Illness
6. High Altitude Pulmonary Edema
7. Obstructive Sleep Apnea Exacerbation
8. Raynaud’s Phenomena
9. Dementia ?

Unifying Hypothesis: some venous particulate clot or platelets, or chemical, bypasses the lung and enters the arterial circulation.
Association of PFO and cryptogenic stroke in young adults (< 55 yo)

<table>
<thead>
<tr>
<th>Study</th>
<th>Pts</th>
<th>PFO (crypto)</th>
<th>PFO (control)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lechat (1988)</td>
<td>26</td>
<td>54%</td>
<td>10%</td>
<td><0.01</td>
</tr>
<tr>
<td>Webster (1988)</td>
<td>40</td>
<td>50%</td>
<td>15%</td>
<td>< 0.01</td>
</tr>
<tr>
<td>De Belder (1992)</td>
<td>39</td>
<td>13%</td>
<td>3%</td>
<td>< 0.01</td>
</tr>
<tr>
<td>De Tullio (1992)</td>
<td>21</td>
<td>47%</td>
<td>4%</td>
<td><0.01</td>
</tr>
<tr>
<td>Hausmann (1992)</td>
<td>18</td>
<td>50%</td>
<td>11%</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Cabanes (1993)</td>
<td>64</td>
<td>56%</td>
<td>18%</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Total</td>
<td>202</td>
<td>46%</td>
<td>11%</td>
<td>< 0.01</td>
</tr>
</tbody>
</table>

(93/202) (29/271)
Transit in Thrombus Caught in Long Tunnel PFO
Diagnosis of a Paradoxical Embolic Stroke

• Non-Paradoxical Embolic Sources Excluded
 – Cerebral Artery Disease (carotid ultrasound)
 – LV Aneurysm (TEE)
 – Aortic Atheromas (TEE)
 – Atrial Fibrillation (Holter monitoring)
 – Hypercoagulability (protein C & S, antithrombin III, Lupus anticoagulant, anticardiolipin antibody, factor V Leiden, Prothrombin 20210A mutation)

• Presence of PFO (or other right to left shunt)
 – Transthoracic echocardiogram with bubble study
 – Transesophageal echocardiogram with bubble study
 – Transcranial Doppler with bubble study
With All This Suggestive Data, Many Thought A Randomized Trial Unnecessary
Why StarFlex recurrent stroke rate may not be less than medical Rx:

2) Thrombus on CardioSeal Implant

By TEE: 7 – 22% at 1 mo.

Risk of a PFO occluder device must be less than risk of recurrent stroke!!

Recurrent stroke rate 3.4% with CardioSeal
Reisman, Jesurum: AJC 2007, 99; 1312-15
The Final Results with Primary End Point Analyses

RESPECT
CLINICAL TRIAL

RANDOMIZED EVALUATION OF RECURRENT STROKE COMPARING PFO CLOSURE TO ESTABLISHED CURRENT STANDARD OF CARE TREATMENT

JOHN D. CARROLL, MD, JEFFREY L. SAVER, MD, DAVID E. THALER, MD, PHD, RICHARD W. SMALLING, MD, PHD, SCOTT BERRY, PHD, LEE A. MACDONALD, MD, DAVID S. MARKS, MD, MBA, DAVID L. TIRSCHWELL, MD
FOR THE RESPECT INVESTIGATORS
AMPLATZER PFO Occluder

- Percutaneous, transcatheter device
- Self-expanding, double-disc design
- Nitinol wire mesh with polyester fabric/thread
- Radiopaque marker bands
- Sizes: 18, 25, 35 mm
- Recapturable and repositionable

*CAUTION: Investigational device in the United States. Limited by Federal (or U.S.) law to investigational use. Not available for sale in the U.S.
Primary Endpoint Analysis – ITT Cohort
50.8% risk reduction of stroke in favor of device

- 3/9 device group patients did not have a device at time of endpoint stroke

HR: 0.492
Log-rank P-value: 0.0825
(95% Confidence interval = 0.217 - 1.114)
Primary Endpoint Analysis – As Treated Cohort
72.7% risk reduction of stroke in favor of device

- The As Treated (AT) cohort demonstrates the treatment effect by classifying subjects into treatment groups according to the treatment actually received, regardless of the randomization assignment.

HR: 0.273
Log-rank P-value: 0.0067
(95% Confidence interval = 0.100 - 0.747)
Subpopulation Differential Treatment Effect

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>Device Group</th>
<th>Medical Group</th>
<th>Hazard Ratio and 95% CI</th>
<th>Pvalue (Log Rank)</th>
<th>Interaction Pvalue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>9/499 (1.8%)</td>
<td>16/481 (3.3%)</td>
<td>0.492 (0.217, 1.114)</td>
<td>0.0825</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.5156</td>
</tr>
<tr>
<td>- 18-45</td>
<td>4/230 (1.7%)</td>
<td>5/210 (2.4%)</td>
<td>0.698 (0.187, 2.601)</td>
<td>0.5901</td>
<td></td>
</tr>
<tr>
<td>- 46-60</td>
<td>5/262 (1.9%)</td>
<td>11/266 (4.1%)</td>
<td>0.405 (0.140, 1.165)</td>
<td>0.0828</td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.7312</td>
</tr>
<tr>
<td>- Male</td>
<td>5/268 (1.9%)</td>
<td>10/268 (3.7%)</td>
<td>0.448 (0.153, 1.311)</td>
<td>0.1321</td>
<td></td>
</tr>
<tr>
<td>- Female</td>
<td>4/231 (1.7%)</td>
<td>6/213 (2.8%)</td>
<td>0.571 (0.161, 2.024)</td>
<td>0.3789</td>
<td></td>
</tr>
<tr>
<td>Shunt Size</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0667</td>
</tr>
<tr>
<td>- None, trace or moderate</td>
<td>7/247 (2.8%)</td>
<td>6/244 (2.5%)</td>
<td>1.034 (0.347, 3.081)</td>
<td>0.9527</td>
<td></td>
</tr>
<tr>
<td>- Substantial</td>
<td>2/247 (0.8%)</td>
<td>10/231 (4.3%)</td>
<td>0.178 (0.039, 0.813)</td>
<td>0.0119</td>
<td></td>
</tr>
<tr>
<td>Atrial septal aneurysm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.1016</td>
</tr>
<tr>
<td>- Present</td>
<td>2/180 (1.1%)</td>
<td>9/169 (5.3%)</td>
<td>0.187 (0.040, 0.867)</td>
<td>0.0163</td>
<td></td>
</tr>
<tr>
<td>- Absent</td>
<td>7/319 (2.2%)</td>
<td>7/312 (2.2%)</td>
<td>0.889 (0.312, 2.535)</td>
<td>0.8259</td>
<td></td>
</tr>
<tr>
<td>Index infarct topography</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.3916</td>
</tr>
<tr>
<td>- Superficial</td>
<td>5/280 (1.8%)</td>
<td>12/269 (4.5%)</td>
<td>0.366 (0.129, 1.038)</td>
<td>0.0487</td>
<td></td>
</tr>
<tr>
<td>- Small Deep</td>
<td>2/57 (3.5%)</td>
<td>1/70 (1.4%)</td>
<td>1.762 (0.156, 19.93)</td>
<td>0.6429</td>
<td></td>
</tr>
<tr>
<td>- Other</td>
<td>2/157 (1.3%)</td>
<td>3/139 (2.2%)</td>
<td>0.558 (0.093, 3.340)</td>
<td>0.5167</td>
<td></td>
</tr>
<tr>
<td>Planned medical regimen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.1966</td>
</tr>
<tr>
<td>- Anticoagulant</td>
<td>4/132 (3.0%)</td>
<td>3/121 (2.5%)</td>
<td>1.141 (0.255, 5.098)</td>
<td>0.8628</td>
<td></td>
</tr>
<tr>
<td>- Antiplatelet</td>
<td>5/367 (1.4%)</td>
<td>13/359 (3.6%)</td>
<td>0.336 (0.120, 0.944)</td>
<td>0.0299</td>
<td></td>
</tr>
</tbody>
</table>
So Who Can We Close?

Subsets Approved for Closure
Not All Paradoxical Emboli Effect the Brain- A Case Report

- 47 y/o female with chest, neck and left arm pain and no cardiac risk factors
- On BCPs
- Paramedics brought her to ER, where she has a ventricular fibrillation arrest
- ECG with T wave inversions V5-V6
- Troponins elevated at 21, CKMB at 249
Decompression illness
The Bends
Asymptomatic ischemic brain lesions

Schwerzmann and Seilor Swiss Med Wkly 2001
Platypnea-orthodeoxia

- Hypoxemia due to right to left shunting
Cath Findings

- Right atrial pressure 16
- Pulmonary artery pressure 42/19
- Pulmonary cap wedge 14
- Pulm vein sats 97%
- LA sats 84%
- AO sats 82%
With a device in place O2 sats normalized
Hypoxia in Patients with Interatrial Septal Defects (IASD)

- Can be persistent, intermittent, or positional
- Mechanism involves transient or persistent elevation in RAP>LAP, or redirection of IVC blood flow toward septum
- Diagnosis can be challenging
 - Requires documentation of R-to-L shunt while hypoxemic
 - Confirmed by improvement in hypoxia after closure
- Associated with a wide variety of conditions
 - Pulmonary AVM
 - Liver Disease
 - Chronic Lung Disease
 - Amiodarone Toxicity
 - Pulmonary Emboli
 - Aortic Aneurysm
 - Hypovolemia
 - Positive Pressure Ventilation
 - Post-pneumonectomy
 - RV Infarction
 - Cardiopulmonary Bypass
 - Carcinoid
Patient with large “eccentrically located” PFO or “acquired” ASD

Device fails to cover the defect completely

Residual right to left shunt by bubble study
Second device deployed to cover the residual defect

Bubble study shows elimination of residual right to left shunt

Patient with large eccentrically located PFO / acquired ASD
PFO Relationship to Migraines
Observational Studies

Effect of PFO closure on migraine

<table>
<thead>
<tr>
<th>Study</th>
<th>Prevalence # migraine / # closed (%)</th>
<th>% migraine improved or cured</th>
<th>Length of follow up (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilmshurst 2000</td>
<td>21/37 (57%)</td>
<td>86%</td>
<td>up to 30</td>
</tr>
<tr>
<td>Morandi 2003</td>
<td>17/62 (27%)</td>
<td>88%</td>
<td>all 6</td>
</tr>
<tr>
<td>Schwerzmann 2004</td>
<td>48/215 (22%)</td>
<td>81%</td>
<td>all 12</td>
</tr>
<tr>
<td>Post 2004</td>
<td>26/66 (39%)</td>
<td>65% cured</td>
<td>all 6</td>
</tr>
<tr>
<td>Reisman 2005</td>
<td>57/162 (35%)</td>
<td>70%</td>
<td>all 12</td>
</tr>
<tr>
<td>Azarbal, Tobis 2005</td>
<td>37/89 (42%)</td>
<td>76%</td>
<td>mean 18</td>
</tr>
<tr>
<td>Total:</td>
<td>206/631 (33%)</td>
<td>78%</td>
<td></td>
</tr>
</tbody>
</table>

The PFO / Stroke Story

2006

PFO, migraine with aura and cryptogenic stroke

Large atrial shunts (PFO & ASD) are present in:
- 7.3% - population controls
- 38.1% - migraine with aura but no stroke
- 55.6% - stroke but no migraine
- 84% - stroke and migraine with aura
MIST Trial

Migraine Intervention with STARFlex Technology (MIST) Trial

Presented at
The American College of Cardiology Scientific Session 2006

Presented by Dr. Andrew Dowson
Migraine Summary

• Relationship exists between PFO and Migraines.
• Two studies stopped due to modest benefit between closure and relief of symptoms
• Registry data notes 50% elimination and additional 20% improvement in migraines with PFO closure
• The discrepancy is attributable to the patient populations- the registries were PFO closures on suspected patients with paradoxical embolization while the migraine trials excluded any patient with TIA/CVAs!!
The PFO / Stroke Story

2005

Tedy Bruschi
- New England Patriot Linebacker
- Stroke
- PFO Device Closure
Bret Michaels, the 47-year-old singer of rock group, Poison, undergoes closure of a PFO after a TIA.
WHAT IS KNOWN ABOUT PFO AND STROKE

- PFO occurs in 10-15% of all adults
- PFO is diagnosed in 50-70% of patients with stroke of unknown cause.
- After a first stroke due to PFO, ½ of patients still have moderate to severe disability after 1 year.
- After a first stroke due to PFO, second strokes occur at a rate of 2%-9% each year. (depending on risk)
- After several strokes from PFO, repeat strokes occur at a rate of 6%-20% each year.
- The risk of repeat stroke due to PFO is increased in patients with leg clots, migraine headache, atrial septal aneurysm (seen by echo), and large PFO shunting (seen by echo).
PFO TREATMENT OPTIONS
CATHETER CLOSURE OF PFO

• **RISKS**
 - Serious complications (0.2%): death, stroke, infection, bleeding, blood vessel injury, anesthesia, device movement or dislodgement (1:400), incomplete closure (1-5%) clot forming on device (30/10,000 cases)

• **BENEFITS**
 - Stroke reduction to less than 1%
 - No scar; minimal pain
 - Out-patient procedure
 - Return to full activity in 2 days
Summary

• PFOs have been conduits for trouble as recognized for centuries.
• The most recent trials regarding cryptogenic stroke suggest the high risk groups (ASA/ large PFO) benefit from closure.
• The CVA type reduced by the device is the type seen from embolic events.
• Certain indications exist for closure already- DCI, MI/peripheral embolizations.
• Certain anatomies can be closed up front (fenestrated septum or small ASDs) or have been reclassified to allow closure (acquired ASD).
• Migraines with aura are still in play –if the patient has a history of a TIA/CVA
• Does a trial really need to show superiority or isn’t getting off coumadin with equivalent results good enough for the patient?
PFOs ? A Tiger waiting to be released
The Ultimate Irony

Insurance companies may deny some percutaneous PFO closures due to the lack of convincing data however, you can have it closed surgically and be fully covered!