What Clinicians Need to Know About Genetic Testing for Patients and Families with HCM

Sharon Cresci, MD
Assistant Professor of Medicine
Assistant Professor of Genetics
Cardiovascular Division
Washington University School of Medicine
Saint Louis, MO

Washington University and Barnes-Jewish Heart & Vascular Center
DISCLOSURE

• Dr. Cresci has no relevant financial interests to disclosure
Should I Offer Genetic Testing to my Patient with HCM ??
Genetic Testing – 2 Categories:

• Diagnostic
 • Comprehensive sequence analysis to identify a disease-causing mutation in a patient with HCM

• Predictive
 • Focused genetic testing to determine if a family member has a previously identified mutation
 - Pathogenic or Likely pathogenic mutation has been identified in the index family member who has HCM
2011 ACCF/AHA Guideline for the Diagnosis and Treatment of Hypertrophic Cardiomyopathy

A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines

Developed in Collaboration With the American Association for Thoracic Surgery, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons
Genetic Testing Strategies/Patient Screening—Recommendations

<table>
<thead>
<tr>
<th>Class:</th>
<th>Screening Guideline:</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Evaluation of family history and genetic counseling is recommended as part of the assessment of patients with HCM</td>
</tr>
<tr>
<td>I</td>
<td>Persons who undergo genetic testing should also undergo counseling by someone knowledgeable in genetics of CV disease</td>
</tr>
<tr>
<td>I</td>
<td>Genetic testing is recommended when patients with an atypical clinical presentation of HCM or when another genetic condition is suspected to be the cause of the LVH</td>
</tr>
<tr>
<td>I</td>
<td>Screening (clinical with or without genetic testing) is recommended in all 1st degree relatives of patients with HCM</td>
</tr>
<tr>
<td>IIa</td>
<td>Genetic testing is reasonable in the index patient to facilitate the identification of first-degree family members at risk for developing HCM</td>
</tr>
</tbody>
</table>
Genetic Testing Strategies/Patient Screening—Recommendations

<table>
<thead>
<tr>
<th>Class:</th>
<th>Screening Guideline:</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Evaluation of family history and genetic counseling is recommended as part of the assessment of patients with HCM</td>
</tr>
<tr>
<td>I</td>
<td>Persons who undergo genetic testing should also undergo counseling by someone knowledgeable in genetics of CV disease</td>
</tr>
<tr>
<td>I</td>
<td>Genetic testing is recommended when patients with an atypical clinical presentation of HCM or when another genetic condition is suspected to be the cause of the LVH</td>
</tr>
<tr>
<td>I</td>
<td>Screening (clinical with or without genetic testing) is recommended in all 1st degree relatives of patients with HCM</td>
</tr>
<tr>
<td>IIa</td>
<td>Genetic testing is reasonable in the index patient to facilitate the identification of first-degree family members at risk for developing HCM</td>
</tr>
</tbody>
</table>
Genetic Testing Strategies/Patient Screening—Recommendations

<table>
<thead>
<tr>
<th>Class:</th>
<th>Screening Guideline:</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Evaluation of family history and genetic counseling is recommended as part of the assessment of patients with HCM</td>
</tr>
<tr>
<td>I</td>
<td>Persons who undergo genetic testing should also undergo counseling by someone knowledgeable in genetics of CV disease</td>
</tr>
<tr>
<td>I</td>
<td>Genetic testing is recommended when patients with an atypical clinical presentation of HCM or when another genetic condition is suspected to be the cause of the LVH</td>
</tr>
<tr>
<td>I</td>
<td>Screening (clinical with or without genetic testing) is recommended in all 1st degree relatives of patients with HCM</td>
</tr>
<tr>
<td>IIa</td>
<td>Genetic testing is reasonable in the index patient to facilitate the identification of first-degree family members at risk for developing HCM</td>
</tr>
</tbody>
</table>
HCM is Caused by More than 1,400 Individual Mutations in More than 11 Genes

α Tropomyosin
Troponin T

Myosin binding protein C

Myosin heavy chain

β Myosin light chain

Genetic Testing Strategies/Patient Screening—HCM Phenocopies

Metabolic myocardial storage CMs (≤ 1%)

- Regulatory subunit of adenosine monophosphate-activated protein kinase glycogen storage disease
 - (PRKAG2)

- Lysosome-associated membrane protein or Danon disease
 - (LAMP2)
 - X-linked dominant

- Fabry (α-galactosidase A deficiency)
 - (GLA)
 - X-linked recessive
Genetic Testing Strategies/Patient Screening—HCM Phenocopies

Metabolic myocardial storage CMs (≤ 1%)

• Regulatory subunit of adenosine monophosphate-activated protein kinase glycogen storage disease
 • (PRKAG2)

• Lysosome-associated membrane protein or Danon disease
 • (LAMP2)
 • X-linked dominant

• Fabry (α-galactosidase A deficiency)
 • (GLA)
 • X-linked recessive

Responds to enzyme replacement therapy
Metabolic myocardial storage CMs (≤ 1%)

- Regulatory subunit of adenosine monophosphate-activated protein kinase glycogen storage disease
 - *(PRKAG2)*

- Lysosome-associated membrane protein or Danon disease
 - *(LAMP2)*
 - X-linked dominant

- Fabry (α-galactosidase A deficiency)
 - *(GLA)*
 - X-linked recessive

Typically rapidly progressive
early consideration for OHT
Genetic Testing Strategies/Patient Screening—HCM Phenocopies

Metabolic myocardial storage CMs (≤ 1%)

- Regulatory subunit of adenosine monophosphate-activated protein kinase glycogen storage disease
 - *(PRKAG2)*

- Lysosome-associated membrane protein or Danon disease
 - *(LAMP2)*
 - X-linked dominant
 - Wolf-Parkinson-White pattern on ECG

- Fabry (α-galactosidase A deficiency)
 - *(GLA)*
 - X-linked recessive
Genetic Testing Strategies/Patient Screening—HCM Phenocopies

Metabolic myocardial storage CMs (≤ 1%)

• Regulatory subunit of adenosine monophosphate-activated protein kinase glycogen storage disease
 • (PRKAG2)

• Lysosome-associated membrane protein or Danon disease
 • (LAMP2)
 • X-linked dominant

• Fabry (α-galactosidase A deficiency)
 • (GLA)
 • X-linked recessive

Symmetric LVH and late gadolinium enhancement in posterobasal wall on MRI
Genetic Testing – 2 Categories:

• **Diagnostic**
 - Comprehensive sequence analysis to identify a disease-causing mutation in a patient with HCM

• **Predictive**
 - Focused genetic testing to determine if a family member has a previously identified mutation
 - Pathogenic or Likely pathogenic mutation has been identified in the index family member who has HCM
Genetic Testing Strategies/Patient Screening—Atypical Presentation of HCM

• Can also help to discriminate between HCM and other causes of LVH, including HTN and “athlete’s heart”
 • Only helpful if pathogenic or likely pathogenic mutation is found
Proposed Classification System for Sequence Variants Identified by Genetic Testing:

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
<th>Probability of being Pathogenic</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Definitely Pathogenic</td>
<td>> 0.99</td>
</tr>
<tr>
<td>4</td>
<td>Likely Pathogenic</td>
<td>0.95-0.99</td>
</tr>
<tr>
<td>3</td>
<td>Uncertain (Variant of Unknown Significance; VUS)</td>
<td>0.05-0.949</td>
</tr>
<tr>
<td>2</td>
<td>Likely Not Pathogenic or of Little Clinical Significance</td>
<td>0.001-0.049</td>
</tr>
<tr>
<td>1</td>
<td>Not Pathogenic or of No Clinical Significance</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Proposed Classification System for Sequence Variants Identified by Genetic Testing:

- No Mutation Identified in 50%
- Beta myosin heavy chain (15%)
- Myosin binding protein C (15%)
- Troponin T (7%)
- Alpha tropomysin (7%)
- Others (6%)
Can also help to discriminate between HCM and other causes of LVH, including HTN and “athlete’s heart”

- Only helpful if pathogenic or likely pathogenic mutation is found
- No pathogenic mutation or VUS found \(\rightarrow\) can NOT conclude that the patient does not have HCM—still left with clinical impression and uncertain about recommendations for family members
Genetic Testing – 2 Categories:

• **Diagnostic**

 • Comprehensive sequence analysis to identify a disease-causing mutation in a patient with HCM

• **Predictive**

 • Focused genetic testing to determine if a family member has a previously identified mutation

 - Pathogenic or Likely pathogenic mutation has been identified in the index family member who has HCM
Genetic Testing Strategies/Patient Screening—Recommendations

<table>
<thead>
<tr>
<th>Class:</th>
<th>Screening Guideline:</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Evaluation of family history and genetic counseling is recommended as part of the assessment of patients with HCM</td>
</tr>
<tr>
<td>I</td>
<td>Persons who undergo genetic testing should also undergo counseling by someone knowledgeable in genetics of CV disease</td>
</tr>
<tr>
<td>I</td>
<td>Genetic testing is recommended when patients with an atypical clinical presentation of HCM or when another genetic condition is suspected to be the cause of the LVH</td>
</tr>
<tr>
<td>I</td>
<td>Screening (clinical with or without genetic testing) is recommended in all 1st degree relatives of patients with HCM</td>
</tr>
<tr>
<td>IIa</td>
<td>Genetic testing is reasonable in the index patient to facilitate the identification of first-degree family members at risk for developing HCM</td>
</tr>
</tbody>
</table>
Clinical Screening with Echocardiography (& 12-Lead ECG) for Detection of HCM

<table>
<thead>
<tr>
<th>Age:</th>
<th>Screening Guideline:</th>
</tr>
</thead>
<tbody>
<tr>
<td><12 yrs</td>
<td>Optional unless any of the following are present:</td>
</tr>
<tr>
<td></td>
<td>- Family history of early HCM-related death, early development of LVH, or other adverse complications</td>
</tr>
<tr>
<td></td>
<td>- Competitive athlete in intense training program</td>
</tr>
<tr>
<td></td>
<td>- Symptoms</td>
</tr>
<tr>
<td></td>
<td>- Other clinical findings that suggest early LVH</td>
</tr>
<tr>
<td>12-18 yrs</td>
<td>Every 12-18 months</td>
</tr>
<tr>
<td>>18-21 yrs</td>
<td>Every ≤5 years or w/onset of symptoms or w/change in symptoms</td>
</tr>
<tr>
<td></td>
<td>- More frequently if there is a family history of late-onset LVH or HCM-related-related complications</td>
</tr>
</tbody>
</table>
Clinical Screening with Echocardiography for Detection of HCM

• Findings consistent with HCM
 • Asymmetric LVH
 • SAM of Mitral Valve
Clinical Screening with Echocardiography for Detection of HCM

- Findings consistent with HCM
 - Asymmetric LVH
 - SAM of Mitral Valve

- Subtle findings
 - Abnormal tissue Doppler pattern for age
 - Abnormal peak systolic strain
 - Crescent shape of LV

E' = 3 cm/s
Genetic Testing Strategies/Family Screening—Recommendations

Identify Family Member with Phenotype (who is willing to be tested)

No Pathogenic variant identified

No Mutation Identified in 50%

- Beta myosin heavy chain (15%)
- Myosin binding protein C (15%)
- Troponin T (7%)
- Alpha tropomysin (7%)
- Others (6%)

Human Molecular Genetics, 2002, Vol. 11, No. 20
Identify Family Member with Phenotype (who is willing to be tested)

- No Pathogenic variant identified
- Variant of Unknown Significance identified

May be reclassified at a later date
Genetic Testing Strategies/Family Screening—Recommendations

1. Identify Family Member with Phenotype (who is willing to be tested)

2. No Pathogenic variant identified
 - Continue to Clinically follow 1st degree family members (repeat echocardiography as previously described)

3. Variant of Unknown Significance identified
 - Continue to Clinically follow 1st degree family members (repeat echocardiography as previously described)
<table>
<thead>
<tr>
<th>Class</th>
<th>Screening Guideline</th>
</tr>
</thead>
<tbody>
<tr>
<td>IIb</td>
<td>The usefulness of genetic testing in the assessment of risk of SCD in HCM is uncertain</td>
</tr>
<tr>
<td>III</td>
<td>Genetic testing is not indicated in relatives when the index patient does not have a definitive pathogenic mutation</td>
</tr>
<tr>
<td>III</td>
<td>Ongoing clinical screening is not indicated in genotype-negative relatives in families with HCM</td>
</tr>
<tr>
<td>IIa</td>
<td>Genetic testing is reasonable in the index patient to facilitate the identification of first-degree family members at risk for developing HCM</td>
</tr>
</tbody>
</table>
Genetic Testing Strategies/Family Screening—Recommendations

- Identify Family Member with Phenotype (who is willing to be tested)
 - Likely Pathogenic variant identified
 - Pathogenic variant identified
 - Test 1st degree family members (who wish to be tested) for specific (identified) mutation
 - Present
Genetic Testing Strategies/Family Screening—Recommendations

Normal LVMI:
≤115 in ♀
≤95 in ♂
Genetic Testing Strategies/Family Screening—Issues

- **Incomplete Penetrance**
 - Even if M (+), may always be P (-)
Identify Family Member with Phenotype (who is willing to be tested)

Likely Pathogenic variant identified

Pathogenic variant identified

Test 1st degree family members (who wish to be tested) for specific (identified) mutation

Absent
Genetic Testing Strategies/Family Screening—Recommendations

<table>
<thead>
<tr>
<th>Class:</th>
<th>Screening Guideline:</th>
</tr>
</thead>
<tbody>
<tr>
<td>IIb</td>
<td>The usefulness of genetic testing in the assessment of risk of SCD in HCM is uncertain</td>
</tr>
<tr>
<td>III</td>
<td>Genetic testing is not indicated in relatives when the index patient does not have a definitive pathogenic mutation</td>
</tr>
<tr>
<td>III</td>
<td>Ongoing clinical screening is not indicated in genotype-negative relatives in families with HCM</td>
</tr>
<tr>
<td>Ila</td>
<td>Genetic testing is reasonable in the index patient to facilitate the identification of first-degree family members at risk for developing HCM</td>
</tr>
</tbody>
</table>
Double mutations are present in 5-8% of patients with HCM

Genetic Testing Strategies/Family Screening—Issues

Genetic test (+)

Genetic test (+)

Beta myosin heavy chain (15%)

Myosin binding protein C (15%)

Troponin T (7%)

Alpha tropomysin (7%)

Others (6%)
Genetic Testing Strategies/Family Screening—Issues

No Mutation Identified in 50%

- Beta myosin heavy chain (15%)
- Myosin binding protein C (15%)
- Troponin T (7%)
- Alpha tropomysin (7%)
- Others (6%)

P (+) M (+) M (+) M (+) M (+)

Genetic test (+) Genetic test (-)

Human Molecular Genetics, 2002, Vol. 11, No. 20
Genetic Testing Strategies/Family Screening—Issues

• **Incomplete Penetrance**
 • Even if M (+), may always be P (-)

• **Double Mutations**
 • If M (-), there is a minimal, but not 0%, chance of being P (+)
Double or compound sarcomere mutations in hypertrophic cardiomyopathy: A potential link to sudden death in the absence of conventional risk factors

Barry J. Maron, MD,* Martin S. Maron, MD,† Christopher Semssarian, MB, BS, PhD‡

From the *Hypertrophic Cardiomyopathy Center, Tafts Medical Center, Boston, Maryland; and †Agnes F. Molecular Cardiology, Centenary Institute, Sydney Medical School, University of Sydney and Royal Prince Alfred Hospital, Camperdown, Australia.

BACKGROUND Risk stratification strategies employing sarcomere gene mutation analysis have proved imprecise in identifying high-risk patients with hypertrophic cardiomyopathy (HCM). Therefore, additional genetic risk markers that reliably determine which patients are predisposed to sudden death are needed.

OBJECTIVE The objective of this study was to determine whether multiple disease-causing sarcomere mutations can be regarded as markers for sudden death in the absence of other conventional risk factors.

METHODS Databases of 3 HCM centers were accessed, and 18 disease-causing mutations in genes encoding sarcomeric proteins were identified. Patients were followed for a median of 3 years (range, 1 to 11 years). Each patient's personal history and family history were assessed for disease severity and adverse events, and the probability of sudden death was calculated with each cardiac event.

RESULTS The probability of dying from a first cardiac event was significantly greater in those with two or more sarcomere mutations compared with those with one or no sarcomere mutations while controlling for the presence of additional risk factors.

CONCLUSIONS Our findings support the emerging hypothesis that double or compound sarcomere mutations and other risk factors are independently associated with adverse events. The identification of diagnostic and predictive markers for genetic disease susceptibility will ensure successful targeted genetic testing and counselling.

Hypertrophic cardiomyopathy family with double-heterozygous mutations; does disease severity suggest double-heterozygosity?
Genetic Testing Strategies/Family Screening—Recommendations

<table>
<thead>
<tr>
<th>Class</th>
<th>Screening Guideline</th>
</tr>
</thead>
<tbody>
<tr>
<td>IIb</td>
<td>The usefulness of genetic testing in the assessment of risk of SCD in HCM is uncertain</td>
</tr>
<tr>
<td>III</td>
<td>Genetic testing is not indicated in relatives when the index patient does not have a definitive pathogenic mutation</td>
</tr>
<tr>
<td>III</td>
<td>Ongoing clinical screening is not indicated in genotype-negative relatives in families with HCM</td>
</tr>
<tr>
<td>IIa</td>
<td>Genetic testing is reasonable in the index patient to facilitate the identification of first-degree family members at risk for developing HCM</td>
</tr>
</tbody>
</table>
Genetic Testing—A Personal Decision

Potential Benefits:
- Targeted clinical surveillance
- ↓ uncertainty
- Opportunity to make realistic life plans

Potential Harm:
- ↑ anxiety if M (+)
- Alteration of self image if M (+)
- Ambiguity if no mutation identified