Information for Our Community

Whether you are part of our community or are interested in joining us, we welcome you to Washington University School of Medicine.

close  


Visit the News Hub

Why chikungunya, other arthritis-causing viruses target joints

Study finds molecular handle that viruses use to get inside certain cells

by Tamara BhandariMay 16, 2018

CDC/Cynthia Goldsmith

Chikungunya virus is a growing threat to the United States and other regions of the world as the mosquito that carries the virus expands its reach. Telltale symptoms of chikungunya infection are fever and joint pain that last about a week. But in up to half of patients, the virus can cause a debilitating form of arthritis that persists for months or even years.

Scientists have understood little about how chikungunya and related viruses cause arthritis. Now, researchers at Washington University School of Medicine in St. Louis have identified the molecular handle that chikungunya grabs to get inside cells. The findings, published May 16 in the journal Nature, could lead to ways to prevent or treat disease caused by chikungunya and related viruses.

The handle, or receptor, is located on cells that build cartilage, muscle and bone. Joints are filled with such cells, which helps explain patients’ painful symptoms. Further, by creating decoy handles, the researchers showed that they could reduce chikungunya infection and signs of arthritis.

“The name chikungunya comes from the Makonde language of Tanzania, and it means ‘to walk bent over.’ That’s how painful the arthritis can be,” said senior author Michael S. Diamond, MD, PhD, the Herbert S. Gasser Professor of Medicine at the School of Medicine. “We now know how chikungunya gets into cells, and we may have found a way to block the infection. If the virus cannot get into the cell, it is unable to replicate and cause infection and disease.

There are no specific treatments or vaccines for chikungunya and related viruses, known as arthritogenic alphaviruses. Doctors simply recommend rest, fluids and over-the-counter pain relievers such as acetaminophen or ibuprofen.

With the aid of a warming planet and modern means of transportation, mosquitoes that carry chikungunya and related viruses are spreading. Once limited to Asia and Africa, chikungunya virus has infected more than a million people in the Caribbean and South America in an outbreak that began in 2013 and continues to this day.

Figuring out how the virus gets inside cells is considered a step toward slowing its spread. Diamond, first author and postdoctoral researcher Rong Zhang, PhD, and colleagues identified the protein on cells that chikungunya virus latches onto.

The protein is called Mxra8, and it is needed for chikungunya to invade both human and mouse cells, the researchers found. Additional experiments showed that not just chikungunya but its arthritis-causing relatives – Mayaro, Ross River, O’nyongnyong and Barmah Forest viruses – require the protein to get into cells.

Since chikungunya uses Mxra8 protein as a handle to open a door into cells, the researchers tested whether preventing the virus from grabbing that handle could reduce infection. They deluged the virus with decoy handles, reasoning that chikungunya would grab the decoy and be locked out of cells. Only the few individual viruses that lucked onto a true handle could infect cells, so the overall infection rate – and signs of arthritis – would fall.

And that’s just what they found. A day after infection, the level of virus in the mice’s ankles and calf muscles was between tenfold and a hundredfold lower in the animals that had been treated with Mxra8 proteins or blocking antibodies than those that received placebo, and the numbers remained lower over the next two days. In addition, three days after treatment, the mice that had received the protein exhibited much less swelling in their ankles than those that received the placebo.

The results suggest that a compound that blocks the virus from attaching to Mxra8 on the surface of cells could prevent or reduce arthritis.

“Not much is known about what Mxra8 does in the human body, so we need more information before developing a drug that targets Mxra8,” said Diamond, who also is a professor of molecular microbiology, and of pathology and immunology. “But we could more immediately develop a drug that targets the virus and prevent it from attaching to this protein.”

The researchers are working on mapping the structure of the protein and locating the exact spot to which the virus attaches. Such information could help researchers design a compound to interfere with the virus’s ability to hold onto the protein, or to design vaccines to prevent infection.

Zhang R, Kim AS, Fox JM, Nair S, Basore K, Klimstra WB, Rimkunas R, Fong RH, Lin H, Poddar S, Crowe, Jr. JE, Doranz BJ, Fremont DH, Diamond MS. Mxra8 is a receptor for multiple arthritogenic alphaviruses. Nature. May 16, 2018.

This study was supported by the National Institutes of Health (NIH), grant numbers R01AI114816, R01AI123348, and R01AI095436, and contract number HHSN272201400058C; and the Defense Reduction Threat Agency, grant number HDTRA1-15-1-0013.

Washington University School of Medicine’s 1,300 faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is a leader in medical research, teaching and patient care, ranking among the top 10 medical schools in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Tamara covers infectious diseases, molecular microbiology, neurology, neuroscience, surgery, the Institute for Informatics, the Division of Physician-Scientists and the MSTP program. She holds a double bachelor's degree in molecular biophysics & biochemistry and in sociology from Yale University, a master's in public health from the University of California, Berkeley, and a PhD in biomedical science from the University of California, San Diego. She joined WashU Medicine Marketing & Communications in 2016. She has received three Robert G. Fenley writing awards from the American Association of Medical Colleges: a bronze in 2020 for "Mind’s quality control center found in long-ignored brain area," a silver in 2022 for "Mice with hallucination-like behaviors reveal insight into psychotic illness," and a bronze in 2023 for "Race of people given Alzheimer’s blood tests may affect interpretation of results." Since January of 2024, Tamara has been writing under the name Tamara Schneider.